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Abstract

Topological transitions in core-annular flow of oil and water are described. Drops of one liquid are
suspended in the second liquid and transported through a pipeline under a pressure gradient. We examine the
merging of an array of drops in this two-fluid flow. Larger drops are found to merge and the flow undergoes a
topological transition to core-annular flow. In core-annular flow of two liquids, one liquid lies at the core and
the other surrounds it. For the case of large oil bubbles in water, a steady core-annular flow with bamboo
waves on the interface is achieved. For the case of large water bubbles in oil, the ensuing core-annular flow
has continually breaking waves at the interface. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two-phase flows of oil and water can have different flow types depending on the flow rates. The
flow types shown in Figs. 2-5 of Joseph et al. (1997) and Chapters V and VII of Joseph and
Renardy (1993) for vertical pressure-driven flow include perfect core-annular flow, wavy core-
annular flow, slugs of oil in water, and drops of oil in water, and drops of water in oil. Figure 3.4
(b) of Joseph and Renardy (1993) shows drops of a heavy Mobil oil in water, in both upflow
where gravity opposes the applied pressure gradient, and downflow where gravity aids the applied
pressure gradient. Figure 15.1 of Joseph and Renardy (1993) shows oil bubbles in water. A
comprehensive classification of flow types for the case of matched density (oil plus additive in
water) was given by Charles et al. (1961). Their Fig. 4 also shows the previously mentioned flow
types, including water drops in oil, and oil drops in water. The flow types are correlated with
prescribed input data. Typically, superficial velocities are given for the flows. The superficial
velocity is U, = O, /4 for oil and U, = Q/A4 for water, where Q, and Q,, are the volume flow
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Fig. 1. Up-flow for Re =0.93, a = 1.28, m = 0.00166, { = 1.1, J = 0.0795 and K = —0.4552. The photograph on the
right is experimentally obtained. Our numerical simulations are on the left, for dimensionless wavenumbers
a=1.5,1.75,2.0.

rates of oil and water, and 4 = 7R3 is the cross-sectional area of the pipe. Flow charts delineate
regions in the plane of superficial velocities. In experiments in the vertical inverted loop of Bai
et al. (1992), the oil is lighter than water so that buoyancy and the pressure gradient act in the
same sense in up-flow, where the core is stretched to produce bamboo waves over a wide interval
of superficial velocities. For slower oil speeds, slugs and bubbles of oil in water occur, while at
faster oil speeds, water drops form in oil. The bamboo waves are a robust regime, and have been
simulated numerically in Li and Renardy (1999): the initial condition was composed of perfect
core-annular flow together with a large-amplitude perturbation in the form of an axisymmetric
eigenfunction. The time-dependent axisymmetric simulation of this initial condition was found to
settle to the bamboo wave solution, as shown in Fig. 1. The parameters in the figure caption are
defined in Section 3. In this paper, we shall see that the bamboo wave solution can also be
achieved with other initial conditions, such as a string of drops of oil in water.

2. Numerical method

There are many interface tracking methods, such as the moving grid method, the front tracking
method, the level set method and the volume-of-fluid (VOF) method. The VOF method provides
a simple way of treating the topological changes of the interface. A recent review article is that of
Scardovelli and Zaleski (1999) and we refer the reader to the references therein. Our code
SURFER++ is composed of three parts: a second-order VOF method to track the interface,
a projection method to solve the Navier—Stokes equations on the MAC grid, and finally, a
continuum method for modeling the interfacial tension. We describe these components below.

2.1. Governing equations

The density p and the viscosity u of each fluid is a constant in each fluid but we allow for the
possibility of a jump across the interface. A concentration (or color) function C is used to
represent and track the interface:
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I fluid 1,
Clx) = {0 fluid 2.

This concentration function is transported by the velocity field u. The average values of the
density and the viscosity are given by p = Cp, + (1 — C)p, and u= Cpu; + (1 — C)u,, where
subscripts refer to fluids 1 and 2. We suppose also that the flow is incompressible: V - u = 0, and
governed by the Navier-Stokes equation:

0
p(a—l;+u-Vu) =-Vp+V-uS+F,

where S is the viscous stress tensor:

Ou; Ou;
S;=(=2 L.
! ( o axj)
The body force F includes the gravity and interfacial tension force. The interfacial tension force is

F, = oxngds, where o 1s the interfacial tension, xk the mean curvature and ng is the normal to the
interface.

2.2. Temporal discretization and projection method

The simultaneous solution of the large system which arises from discretizing the governing
equations is very costly, especially in three spatial dimensions. An efficient approximation can be
obtained by decoupling the solution of the Navier—Stokes equations from the solution of the
continuity equation by a projection method.

The pressure is decomposed into two parts, — fx + p, where f is the driving pressure gradient. In
the projection method, the momentum equations are first solved for an approximate #* assuming
that #" is known

u —u
At

where the driving pressure gradient f is treated as a body force. In general, the intermediate flow
field #* does not satisfy the incompressibility equation. It is corrected by the pressure

1
= —u”'Vu”+;(f+v'(uS)+F+pg)",

un+l —u Vp
At p’
in order to yield a divergence free velocity #"*! at the next time step. The pressure field is not
known in this equation, but by taking the divergence of this equation, it is found to satisfy Poisson
equation,

Vp V-u
V()=
In the problems we address below, the boundary conditions for the velocity are periodicity and

the Dirichlet condition. Analogously, the boundary conditions for the pressure are periodicity and
the Neumann condition, respectively.
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Fig. 2. (a) Two-dimensional Cartesian mesh with variable cell sizes; (b) Location of variables in an MAC mesh cell.

2.3. Spatial discretization

The spatial discretization of the momentum equation and Poisson equation for the pressure is
based on a finite difference scheme known as the MAC method. A mesh of rectangular cells is
used, with variable sizes, as shown in Fig. 2. The gridpoints for the pressures and velocities differ:
while the pressure and the concentration function C are given at nodes in the center of each
rectangular cell, the velocities are given at the centers of the faces as indicated in Fig. 2.

2.4. Advection of the interface

At the discrete level, the concentration function is the volume fraction field C;;: when a cell is
filled by the fluid 1, C;; = 1; when a cell does not contain any of this fluid, C;; = 0. The interfaces
are in the cells with C;; between 0 and 1. When we represent the interface by a volume fraction
field, we lose interface information and we cannot determine a unique interface; the interface must
be reconstructed. We use the piecewise linear interface calculation (PLIC) method. The gist is to
calculate the approximate normal » to the interface in each cell, since this determines one unique
linear interface with the volume fraction of the cell. The discrete gradient of the volume fraction
field yields: n = V"C/(|V"C)).

The second step of the VOF method is to evolve the volume fraction field C. Lagrangian
method is the natural choice for interface evolution. In this scheme, once the interface is
reconstructed, the velocity at the interface is interpolated linearly and then the new interface
position is calculated via x"*! = x" + u(A¢). Fig. 3 illustrates how Lagrangian method performs
on an arbitrary two-dimensional mesh. In comparison with Eulerian method, Lagrangian
method has the following advantages: when the Courant condition (Max |u|)At/h < 1/2 is
satisfied, this method is stable, and the volume fraction always satisfies the physical constraint
0<C«l.

In the VOF method, the interfacial tension condition across the interface is not applied directly,
but rather as a body force over the cells which contain the interface. Two such formulations have
been implemented in this work. The first is the continuous surface force formulation, in which
f=oxns and F, = f VC. The second is the continuous surface stress formulation, in which
F,=V -T =0dskns and T = [(1 — ns ® ng)ads|, which leads to a conservative scheme for the
momentum equation. Their performances are similar.
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Fig. 3. Lagrangian method on arbitrary two-dimensional mesh. Shaded polygon represents part occupied by the fluid
in the central cell. Broken line shows the polygon position after advection in the local velocity field represented by
arrows. The fluid is redistributed between neighboring cells which the new polygon partially overlaps.

2.5. Semi-implicit stokes solver

The above is an explicit method, and not suitable for simulations at low Reynolds numbers that
occur in the oil. For an explicit method, the time step A¢ should be less than the viscous time scale,
T, = ph*/ i, where h denotes the mesh size. This stability limit is much more restrictive than the
CFL condition for simulations of low Reynolds number flows. In order to carry out calculations
for times of order 1, the implicit treatment of the viscous terms has been developed and is de-
scribed in Li and Renardy (1999). The time integration scheme is constructed to be implicit for the
Stokes operator and otherwise explicit. In summary, this scheme is first-order accurate and un-
conditionally stable. The stability of this scheme is crucial for simulation of low Reynolds number
flow in the oil.

3. Flow parameters

We consider vertical pipeline transportation of two liquids driven by a pressure gradient. As
shown in Fig. 4, liquid 1 is the drop liquid and liquid 2 is the surrounding liquid. In dimensional
terms, the pipe radius is denoted L,, the computational length in the axial direction L,, T the
interfacial tension, and the pressure gradient in the axial direction is a constant: dP*/dx = —f™.
Initially, the drop is an ellipsoid of radii a, and a,, centered at (¢, c,). The simulation of large
drops can lead to merging and formation of a disturbed core-annular flow called bamboo waves
shown in Fig. 1, and we therefore, relate our parameters to those of core-annular flow. In core-
annular flow, the notation used in Li and Renardy (1999) is as follows: the dimensional pipe
radius is R, and the undisturbed radius of the core is R;. In our drop problem, the volume of the
initial ellipsoidal drop is (4/3)na?a,, and the volume of the computational domain is nL2L,. The
corresponding core-annular flow with the same volume ratio of the core to annular liquids as the
drop simulation work with drop to outer liquids yields: R, = L, and R}/R} = (4/3)a?a,/(L?L,)

_ 2a, [a,

R, = —.
VL




758 Y. Y. Renardy, J. Li | International Journal of Multiphase Flow 27 (2001) 753-763

- Ly >

Liquid 1
! Liquid 2

!

Imposed
pressure
gradient

Fig. 4. Axisymmetric flow computational domain, periodic in the y direction with period L, = 2n/«. The pipe radius is
L.

These expressions allow us to non-dimensionalize the drop problem in a manner which is con-
sistent with core-annular flow. Dimensionless variables are chosen to be (r,x) = (r*,x")/Ry,
(u,v) = (u*,0")/V;(0), t =V (0)/Ry, P=P/[p,V;?(0)], where V;(0) denotes the centerline
velocity in the corresponding core-annular flow:

RZ

Vr0) = (f* + ng)4—1A,A =mK+a —1+2(K—1)log a.

Hy
The following are the six dimensionless parameters: the viscosity ratio m = u,/p,, length ratio
a = R,/R,, density ratio { = p,/p,, ratio of driving forces K = (f* + p,g)/(f* + p,g), Reynolds
number Re = p, ¥;(0)R,/p,, and interfacial tension parameter J = T*R,p, /3. These are related to
the parameters used by Bai et al. (1992) via J=J"/a and K= (1+F)/({+F), where

F=f"/(pg)-

4. Numerical results

We consider a periodic array of drops in vertical pipe flow as in Fig. 4. We choose flow pa-
rameters that reflect the conditions under which bamboo waves such as Fig. 1 are observed. The
oil density is 0.905 g cm—, oil viscosity is 6.01 poise, water density is 0.995 g cm™* and water
viscosity is 0.01 poise, R, = 3/16 inch = 0.47625 cm, T* = 8.54 dyn/cm, J* = p,T*R, /12 = 0.102.

The computational domain for this axisymmetric flow is shown in Fig. 4 with L, = 1.28 and
L, = n. The figures are drawn with three of the periodic array of cells over the vertical cross-
section of the pipe. The density ratio is { = 1.1 and the viscosity ratio is m = 0.00166.

In Fig. 5, K = —0.9993 as in the core-annular flows simulated in Figs. 9-11 of Li and Renardy
(1999). The initial drop has its center at (0,7/2) and the radii are 0.9 and 1.3 in the x and y
directions, respectively. The mesh is 64 x 256. The oil drops first rise and then flatten and then
begin to fall. The pressure gradient drives the central oil drops upward, while the heavier water is
driven down by gravity counteracting the pressure gradient. In perfect core-annular flow, where
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Fig. 5. Oil drops in water; interface positions at 1 s, 41 s, 81 s, 121 s.

most of the volume is oil, water is dragged along with the core oil. In this bubble flow, most of the
volume is water, and hence the oil is dragged down by the water. A steady-state is achieved where
the shape is flatter at the bottom. This shape is observed in the photograph of up-flow in Figure
3.4(b) of Joseph and Renardy (1993).

In Fig. 6, the drops are water and the outer liquid is oil. The initial ellipsoidal radii are
a, =0.5,a, = 1.0. In order to push the water drops upwards, the driving pressure gradient is
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Fig. 6. Water drops in oil; 0 s, 125 s.
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Fig. 7. Water drops in oil; 0's, 10s, 205,305,405, 50 s, 60 s, 70 s, 80 s.

increased by a factor 1.5 from that of Fig. 5. The water drops attain a steady-state shape with a
dimple at the bottom and smooth rounded top, which is a distinctly different shape from the oil
drops.

Longer drops are examined under the same pressure gradient in Fig. 7, where the computa-
tional domain is 1 x 2. The initial ellipsoid is centered at (0, n) with radii @, = 0.5,a, = 3.0. The
drops reach a steady-state shape, translating upwards, with a dimple at the bottom of the drops
and a filament extending out at the top. The drops or filaments are on the order of the mesh size
and require mesh refinement to resolve the features. However, the shapes are those of the slugs
observed in pipe flow.

Larger drops of oil evolve to shapes which approach the pipe walls. Since our code does not
deal with contact lines, results will be shown only for evolutions that do not touch the walls. Fig. 8
shows evolution to bell-shaped drops. The mesh has been refined to 64 x 512. The center of the
drop is as before. The radii are 1.2 and 1.55 in the x and y directions. The driving pressure gradient
is as in the previous figure. With a slightly smaller initial drop (radii 1.15 and 1.55 in the x and y
directions) but the driving pressure gradient increased by a factor 1.5, the drops assume even more
of the bell shapes, as shown in Fig. 9.

Fig. 10 shows the evolution of drops on a 64 x 512 mesh, with the driving pressure gradient of
the bamboo waves treated in Li and Renardy (1999), as in Figs. 5-8. The radii of the initial drop
are 1.2 and 1.55 in the x and y directions. The interfacial tension has been decreased by a factor of
2.66. The drops merge and eventually saturate to large amplitude bamboo waves. Lower
amplitude bamboo waves such as those simulated in Fig. 1 (cf. Li and Renardy, 1999) have
symmetric crests. At larger amplitudes, a slight asymmetry sets in.

The liquids are exchanged in Fig. 11, where the drop liquid is now water and the outer liquid is
oil. The driving pressure gradient of Fig. 10 did not move the water drops, which occupy most of
the domain and are heavier than the oil. Rather, the water drops evolved to steady-state apple-like
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Fig. 9. Oil drops in water; interface positions at 0's, 6.5 s, 13's, 19.5 s. 64 x 512 mesh.

shapes. The driving pressure gradient was increased by a factor 1.5 to the same level as Fig. 9, and
this is sufficient to push the water drops upwards. These first evolve to apple-like shapes, and then
merge and form a core-annular flow, where the interface develops fins. This evolution is distinct
from the case of oil drops in that the interfacial waves are breaking waves and do not reach a
steady-state.
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Fig. 11. Water drops in oil; 0's, 3's, 6.14 s, 12.39 5, 29.04 s.

5. Conclusion

We have examined the evolution of a periodic array of drops in two-fluid flow of oil and water,
driven by a pressure gradient. When the oil drops are small, they evolve into disc or bell shapes. If
they are closely packed, they may form bamboo waves. If the oil drops are large and the flow is
fast, then they touch the walls. When the liquids are reversed, the water drops in oil evolve to
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oblong shapes with a dimple at the bottom, and possibly filaments. When water drops merge to
form core-annular flow, the interface evolves to continually breaking waves. These trends are
consistent with the flow chart of Joseph and Renardy (1993) Figure 16.1. The types of flow that
arise in up-flow include the transition of oil slugs to oil sticking to the wall, and transition of oil
slugs to bamboo or disturbed bamboo waves.
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